Goto

Collaborating Authors

 Online


A Additional details for experiment presented in Section 3 Motivation We trained each agent i with online Q-learning [33] on the Q

Neural Information Processing Systems

The Boltzmann temperature is fixed to 1 and we set the learning rate to 0.05 and the discount factor to 0.99. After each learning episode we evaluate the current greedy policy on 10 episodes and report the mean return. Curves are averaged over 20 seeds and the shaded area represents the standard error. SPREAD (Figure 4a): In this environment, there are 3 agents (small orange circles) and 3 landmarks (bigger gray circles). To maximize their return, agents must therefore spread out and cover all landmarks.


Sm: enhanced localization in Multiple Instance Learning for medical imaging classification CITIC-UGR University of Granada

Neural Information Processing Systems

Multiple Instance Learning (MIL) is widely used in medical imaging classification to reduce the labeling effort. While only bag labels are available for training, one typically seeks predictions at both bag and instance levels (classification and localization tasks, respectively). Early MIL methods treated the instances in a bag independently. Recent methods account for global and local dependencies among instances. Although they have yielded excellent results in classification, their performance in terms of localization is comparatively limited.


Online Continual Learning with Maximally Interfered Retrieval

Neural Information Processing Systems

Continual learning, the setting where a learning agent is faced with a never ending stream of data, continues to be a great challenge for modern machine learning systems. In particular the online or "single-pass through the data" setting has gained attention recently as a natural setting that is difficult to tackle. Methods based on replay, either generative or from a stored memory, have been shown to be effective approaches for continual learning, matching or exceeding the state of the art in a number of standard benchmarks. These approaches typically rely on randomly selecting samples from the replay memory or from a generative model, which is suboptimal. In this work we consider a controlled sampling of memories for replay. We retrieve the samples which are most interfered, i.e. whose prediction will be most negatively impacted by the foreseen parameters update. We show a formulation for this sampling criterion in both the generative replay and the experience replay setting, producing consistent gains in performance and greatly reduced forgetting.


Repeated Augmented Rehearsal: A Simple but Strong Baseline for Online Continual Learning

Neural Information Processing Systems

Online continual learning (OCL) aims to train neural networks incrementally from a non-stationary data stream with a single pass through data. Rehearsal-based methods attempt to approximate the observed input distributions over time with a small memory and revisit them later to avoid forgetting. Despite their strong empirical performance, rehearsal methods still suffer from a poor approximation of past data's loss landscape with memory samples. This paper revisits the rehearsal dynamics in online settings. We provide theoretical insights on the inherent memory overfitting risk from the viewpoint of biased and dynamic empirical risk minimization, and examine the merits and limits of repeated rehearsal. Inspired by our analysis, a simple and intuitive baseline, repeated augmented rehearsal (RAR), is designed to address the underfitting-overfitting dilemma of online rehearsal. Surprisingly, across four rather different OCL benchmarks, this simple baseline outperforms vanilla rehearsal by 9%-17% and also significantly improves the state-of-the-art rehearsal-based methods MIR, ASER, and SCR. We also demonstrate that RAR successfully achieves an accurate approximation of the loss landscape of past data and high-loss ridge aversion in its learning trajectory. Extensive ablation studies are conducted to study the interplay between repeated and augmented rehearsal, and reinforcement learning (RL) is applied to dynamically adjust the hyperparameters of RAR to balance the stability-plasticity trade-off online.


A Bandit Learning Algorithm and Applications to Auction Design

Neural Information Processing Systems

We consider online bandit learning in which at every time step, an algorithm has to make a decision and then observe only its reward. The goal is to design efficient (polynomial-time) algorithms that achieve a total reward approximately close to that of the best fixed decision in hindsight. In this paper, we introduce a new notion of (ฮป, ยต)-concave functions and present a bandit learning algorithm that achieves a performance guarantee which is characterized as a function of the concavity parameters ฮป and ยต. The algorithm is based on the mirror descent algorithm in which the update directions follow the gradient of the multilinear extensions of the reward functions. The regret bound induced by our algorithm is ร•( T) which is nearly optimal.


Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online Continual Learning

Neural Information Processing Systems

Online continual learning (OCL) requires the models to learn from constant, endless streams of data. While significant efforts have been made in this field, most were focused on mitigating the catastrophic forgetting issue to achieve better classification ability, at the cost of a much heavier training workload. They overlooked that in real-world scenarios, e.g., in high-speed data stream environments, data do not pause to accommodate slow models. In this paper, we emphasize that model throughput-defined as the maximum number of training samples that a model can process within a unit of time - is equally important. It directly limits how much data a model can utilize and presents a challenging dilemma for current methods. With this understanding, we revisit key challenges in OCL from both empirical and theoretical perspectives, highlighting two critical issues beyond the well-documented catastrophic forgetting: (i) Model's ignorance: the single-pass nature of OCL challenges models to learn effective features within constrained training time and storage capacity, leading to a trade-off between effective learning and model throughput; (ii) Model's myopia: the local learning nature of OCL on the current task leads the model to adopt overly simplified, task-specific features and excessively sparse classifier, resulting in the gap between the optimal solution for the current task and the global objective. To tackle these issues, we propose the Non-sparse Classifier Evolution framework (NsCE) to facilitate effective global discriminative feature learning with minimal time cost. NsCE integrates non-sparse maximum separation regularization and targeted experience replay techniques with the help of pre-trained models, enabling rapid acquisition of new globally discriminative features. Extensive experiments demonstrate the substantial improvements of our framework in performance, throughput and real-world practicality.


Dealing with Synthetic Data Contamination in Online Continual Learning Maorong Wang Nicolas Michel 1,2 Jiafeng Mao 1

Neural Information Processing Systems

Image generation has shown remarkable results in generating high-fidelity realistic images, in particular with the advancement of diffusion-based models. However, the prevalence of AI-generated images may have side effects for the machine learning community that are not clearly identified. Meanwhile, the success of deep learning in computer vision is driven by the massive dataset collected on the Internet. The extensive quantity of synthetic data being added to the Internet would become an obstacle for future researchers to collect "clean" datasets without AI-generated content. Prior research has shown that using datasets contaminated by synthetic images may result in performance degradation when used for training. In this paper, we investigate the potential impact of contaminated datasets on Online Continual Learning (CL) research. We experimentally show that contaminated datasets might hinder the training of existing online CL methods. Also, we propose Entropy Selection with Real-synthetic similarity Maximization (ESRM), a method to alleviate the performance deterioration caused by synthetic images when training online CL models. Experiments show that our method can significantly alleviate performance deterioration, especially when the contamination is severe.


F-OAL: Forward-only Online Analytic Learning with Fast Training and Low Memory Footprint in Class Incremental Learning

Neural Information Processing Systems

Online Class Incremental Learning (OCIL) aims to train models incrementally, where data arrive in mini-batches, and previous data are not accessible. A major challenge in OCIL is Catastrophic Forgetting, i.e., the loss of previously learned knowledge. Among existing baselines, replay-based methods show competitive results but requires extra memory for storing exemplars, while exemplar-free (i.e., data need not be stored for replay in production) methods are resourcefriendly but often lack accuracy. In this paper, we propose an exemplar-free approach--Forward-only Online Analytic Learning (F-OAL). Unlike traditional methods, F-OAL does not rely on back-propagation and is forward-only, significantly reducing memory usage and computational time. Cooperating with a pre-trained frozen encoder with Feature Fusion, F-OAL only needs to update a linear classifier by recursive least square. This approach simultaneously achieves high accuracy and low resource consumption. Extensive experiments on benchmark datasets demonstrate F-OAL's robust performance in OCIL scenarios.


Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes

Neural Information Processing Systems

Continuously learning to solve unseen tasks with limited experience has been extensively pursued in meta-learning and continual learning, but with restricted assumptions such as accessible task distributions, independently and identically distributed tasks, and clear task delineations. However, real-world physical tasks frequently violate these assumptions, resulting in performance degradation. This paper proposes a continual online model-based reinforcement learning approach that does not require pre-training to solve task-agnostic problems with unknown task boundaries. We maintain a mixture of experts to handle nonstationarity, and represent each different type of dynamics with a Gaussian Process to efficiently leverage collected data and expressively model uncertainty. We propose a transition prior to account for the temporal dependencies in streaming data and update the mixture online via sequential variational inference. Our approach reliably handles the task distribution shift by generating new models for never-before-seen dynamics and reusing old models for previously seen dynamics. In experiments, our approach outperforms alternative methods in non-stationary tasks, including classic control with changing dynamics and decision making in different driving scenarios.


Impression learning Online representation learning with synaptic plasticity Appendices

Neural Information Processing Systems

Our derivation of the update for IL (Eq. 3) is based on an expansion of log Note that this is not a truncated Taylor series approximation - we are instead using Taylor's theorem, and the second term provides an exact expression for the bias. Thus, for our particular choice of neural model, the bias is proportional to B, which vanishes as performance improves. Note that the update term in Eq. (S1) is O(| In this section, we explore the relationships between impression learning (IL) and other stochastic learning algorithms. B.1 Neural Variational Inference Neural variational inference is a learning algorithm for neural networks that optimizes the evidence lower bound (ELBO) objective function. Here, we modify the algorithm by incorporating our novel loss (Eq.